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Abstract 

Presented is a total-Lagrangian displacement-based non-linear finite-element model of thin-film membranes for sta- 
tic and dynamic large-displacement analyses. The membrane theory fully accounts for geometric non-linearities. Fully 
non-linear static analysis followed by linear modal analysis is performed for an inflated circular cylindrical Kapton 
membrane tube under different pressures, and for a rectangular membrane under different tension loads at four comers. 
Finiteelement results show that shell modes dominate the dynamics of the inflated tube when the inflation pressure is 
low, and that vibration modes localized along four edges dominate the dynamics of the rectan-gular membrane. Numer- 
ical dynamic characteristics of the two membrane structures were experimentally verified using a Polytec PI PSV-200 
scanning laser vibrometer and an EAGLE500 8camera motion analysis system. 
0 2004 Published by Elsevier Ltd. 
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1. Introduction 

Recently there has been a renewed interest in deployable/inflatable structures for terrestrial investiga- 
tions. Moreover, because the cargo space of a launch vehicle is always limited, large space structures must 
be designed to be stowed during launch and deployed once on orbit. Hence, instead of using previous elec- 
tro-mechanical deployment systems, recent efforts of NASA concentrate on the use of inflatable structures 
for space applications (Salama et al., 2000; Jenkins, 2001). For example, NASA conducted the Inflatable 
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28 Antenna Experiment (ME) in 1996 (Dornhiem and Anselmo, 1996). The membrane antenna having an in- 
29 flated diameter of 5 O H w k h  three 93fl long struts was transported by the space shuttle Endeavour in a 
30 7@ x 3H x lSf$ container. Also infiatable membrane structures have been used in parabolic antennas, 
3 1 radiators, solar concentrators, sun shields, habitats, radio-frequency structures, optical communication sys- 
32 tems, radars, lightweight radio-meters, telescopes, etc. Moreover, large balloons are also 
33 tures that have been used for many scientific missions. Advantages of membrane structu 
34 stowed volume, lightweight, low cost, and good thermal and damping properties (Palisoc 
35 there are difficulties in the design of large scientific membranes (Damle et al., 1997). 
36 Over the last few decades, studying the dynamic behaviors of inflatable membrane structures has proven 
37 to be a challenging job. Many researchers have studied the dynamic characterization of membranes using 
38 numerical methods and, when possible, experimental approaches. Numerical methods such as finite differ- 
39 ence and boundary elements were used by some researchers to compute vibration modes and frequencies of 
40 inflatable dams (Hsieh and Plaut, 1990). The membrane material used in the nwnerical analysis was as- 
41 sumed inextensible and its weight was neglected in the determination of the equilibrium shape. They found 
42 that the membrane’s mass density is of little influence on the computed natural frequencies. Other research- 
43 ers used finite elements and boundary elements to model and compute natural frequencies and mode shapes 
44 of a single-anchor inflatable dam (Mysore and Liapis, 1998). They found that the rigid foundation that an- 
45 chors the dam increases the frequencies whereas the presence unded water tends to reduce the fre- 
46 quencies. They noted that the natural frequencies are depen the internal pressure as well as the 
47 hydrodynamic pressure of the impounding water. The pressure in an inflatable structure can also play a 
48 critical role in the suppression of vibration (Choura, 1997). This study found that the vibration suppression 
49 of inflatable structures can be accomplished by varying the internal pressure and thus there is no need of 
50 other external actuators for vibration suppression. 
51 Some researchers tested extremely lightweight inflatable structures in a vacuum chamber and in the 
52 ambient atmospheric condition (Slade et al., 2001). They found a lack of correlation between the two cases, 
53 and they explained it to be caused by air damping. Because the coupling of a lightweight membrane and air 
54 is a highly non-linear and localized fluid-structure interaction prcblem, it is difficult to perform accurate 
55 numerical modeling and simulation of such problcms. Hence, testing inflatable stntctuies in vacuum con- 
56 ditions becomes necessary in order to verify numerical predictions. Moreover, because of the size limitation 
57 on actual vacuum chambers, tests in vacuum conditions for large membrane structures are only possible by 
58 using scaled models (Pappa et al., 20011. Johnson and Lienard (2001) obtained the natural frequencies and 
59 mode shapes of a one-tenth d e  Next Generation Space Telescope (NGST) using a finite-element model 
60 developed using the cable n od. The difference between predicted and measured natural fre- 
61 quencies ranges from 2% to was noted that predicted mode shapes correlated well for strut- 
62 dominated modes, while membranedominated modes showed less correlation. The study of pre-stressed 
63 membranes by Hall et al. (2002) showed that the natural frequencies in air are lower than the ones in vac- 
64 uum because air acts as a non-structural mass. But, the numerical natural frequencies obtained by Kuka- 
65 thasan and Pellegrino (2002) were lower than experimental vacuum ones and the error was attributed to an 
66 inaccurate tension force or Young’s modulus. However, they stated that the error reduced as the tension 
67 force was increased. Experiments also showed that it is difficult to excite global vibration modes of a mem- 
68 brane applying excitations at inflatable components because these components have high local 
69 flexibi nant frequencies may vary with the excitation location (Pappa et al., 2001; Gaspar et al., 
70 2002). Moreover, because the light weight of membranes, contact sensors cannot be used in testing and 
71 non-contact sensors (e.g., scanning laser vibrometers) need to be used (Gaspar et al., 2002). 
72 In recent years many researchers used commercial finite-element packages to model and analyze non-lin- 
73 ear elastic problems of thin-thickness membrane structures (Wong and Pellegrino, 2003; Kukathasan and 
74 Pellegrino, 2003; Johnston and Parrish, 2003; Jha and Inman, 2003; Holland et al., 2003; Greschik et al., 
75 2003). Because of thin thickness, how to prevent wrinkling becomes the major task in the design of mem- 
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brane structures (especially those for communication use), and hence membrane wrinkling has been heavily 
studied (Wong and Pellegrino, 2003; Kukathasan and Pellegrino, 2003; Jacobson et al., 2004; Su et ai., 
2003; Sutjahjo et al., 2004). Other important problems studied include air mass effect (Giraudeau et al., 
2002; Kukathasan and Pellegrino, 2003), deployment methods and dynamics (Tsunoda et al., 2003), stiff- 
ening by internal pressure, follower-force effect by internal pressure (Jha and Inman, 2003), wrinkle-free 
design (Sakamoto et al., 2003), crease of membranes, curling of membrane edges caused by residue stresses, 
gravity-induced sag and pre-stressing (Jacobson et al., 2004), local buckling due to defects, clefting (Lennon 
and Pellegrino, 2000), and experimental techniques for accurate non-contact measurements (Slade et al., 
2003; Bales et al., 2003). In wrinkling analysis, the major task is to predict wrinkling regimes, out-of-plane 
displacements, wrinkle wavelengths, and dynamic characteristics after wrinkling (Wong and Pellegrino, 
2003; Kukathasan and Pellegrino, 2003). Because of thin thickness, such analysis always requires the use 
of very small plate or shell elements and hence very long computation time is needed. One can see from 
the literature that A33AQUS (2001) is one of the popular finite-element codes used in solving such non-lin- 
ear elastic problems (Wong and Pellegrino, 2003; Kukathasan and Pellegrino, 2003; Johnston and Parrish, 
2003; Jha and Inman, 2003). However, plate and shell elements in commercial codes usually do not include 
effects that are special to membranes, such as air mass effect and pressure-induced follower-force effect. 
Moreover, dynamic analysis of post-buckled structures requires a fully non-linear static analysis and then 
a linear modal analysis, and it usually requires special attentions in using commercial codes because differ- 
ent remedial techniques are used for improving convergence and accuracy, preventing numerical singular- 
ity, and/or accounting for large geometric non-linearities. Hence, even the post-buckling analysis results 
from popular commercial codes do not always match with experimental data (Kukathasan and Pellegrho, 
2003; Jha and Inman, 2003). Furthermore, although some commercial packages can give somewhat reason- 
able results, the black-box feeling in using those remedial techniques of commercial packages is always a 
hidden pain of researchers. For university professors it is especially painful because it is costly and incon- 
venient to use commercial packages for teaching finite-element courses, especially the second finite element 
course. Hence, researchers have been improving their in-house finite-element codes by adding new non-lin- 
ear elements and solution sequences for analyzing membrane structures (Jacobson et a1 , 3004; Su et al., 
2003; Sutjahjo et al., 2004). 

The above review shows that study of membranes is challenging because of the modeling, analysis, and 
experimental issues caused by the light weight, high flexibility, thin thickness, and air mass effect. This work 
:s to avoid some of these issues by developing a non-linear membrane element by knpiementing a fully non- 
linear membrane theory, to use a scanning laser vibrometer and a motion analysis system for dynamic test- 
ing, and to investigate the dynamic characteristics of thin-film membranes subjected to internal pressures 
and/or external tension loads. 

2. Theoretical background 

Fig. 1 shows the three coordinate systems needed for the modeling of initially curved membranes. The 
xyz is an orthogonal curvilinear coordinate system with the curvilinear axes x and y being on the unde- 
formed reference surface of the membrane and the z axis being a rectilinear axis, and the tqc is an orthog- 
onal curvilinear coordinate system with the curvilinear axes and q being on the deformed reference surface 
and the 5 axis  beiig a rectilinear axis. The and f i  represent the convected configurations of x and y axes. 
Also, an inertial rectangular coordinate system abc is used for reference purpose in the calculation of initial 
curvatures. The ik are unit vectors along the t, q, i axes, jk are unit vectors along the x, y ,  z axes, and i,, ib, 
and i, are unit vectors along the u, b, c axes. It can be shown that the variations of extension strains el and 
e2 and shear strain y 6 ( 7 6 1  + y62) on the reference plane of the membrane are given by (Pai and Young, 

120 2003; Nayfeh and Pai, 2004): 
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Fig. 1 .  The three coordinate systems for modeling and the undeformed and deformed geometries of a differential reference surface of a 
membrane. 

(1) 

(2) 

&et = T116t11 + T 1 2 6 t l 2  + T136t13 

6 e 2  = T216t21  + Tu6ta + T236t23  

a t l2+  

$el)  
&?6 = 

136 where 
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140 Here ky are initial curvatures, U, ti ,  w are displacement components of an arbitrary point on the reference 
141 plane, and U, au/ax, u,, au/ay, etc. The variations of deformed curvatures ki are given by 

146 where 

- 
2 cos y6( 1 + e2) 

B,, =-(-. l a u  in+--im) au 
2 ax, ax, 

159 where u is the local displacement vector relative to the deformed coordinate system <r& and x1 = x, x2 = y, 
160 and x3 _= z. The fully non-linear strain-displacement relations can be derived by using the concept of local 
161 relative displacements and Fig. 1 to be (Pai and Palazotto, 1995) 

{ B )  = ($1 (1 1) 

(12) 
{B} = {Bli,B22,2B12}T 

165 where the change of strains through the thin thickness of a membrane is neglected and 

T {$} = ((1 +el)cosy6l - 1,(1 +e2)cosY62 - l ,  ( l  +el)siny61 + (1 +e2)sinY62} 

169 For a membrane consisting of oxthotropic layers, one can obtain the transformed material stiffness matrix 
170 [$)I for the ith lamina from its principal material stiffness matrix [@”I and its ply angle (measured with 
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171 respect to the axis x )  by using tensor transformations and assuming that Jaumann stress J$  = 0. The 
172 stress-strain relation for the ith lamina is given by 

{J( ')} = [3)] {B}  

176 where 

179 3. Finit-lement formulation 

180 To study the dynamic characteristics of a tensioned membrane, we first perform fully non-linear static 
18 1 analysis of the membrane under static loading and then perform a linear modal analysis to obtain natural 
182 frequencies and mode shapes with respect to the statically deformed configuration. To derive finite-element 
183 equations for fully non-linear static analysis we use the principle of virtual work, which states that (Wash- 
184 izu, 1982) 

6l-I = 6W,, (15) 
188 where l-I is the elastic energy and W,, is the non-conservative energy due to external loads. 

189 3. I .  Elastic energy 

190 Because the elastic energy ll is due to relative displacements among material particles, we have 

194 where fl is the force vector acting on the deformed surface of the undeformed area dx,dx, (i # m # nl of 
195 an undeformed infinitesimal cube d x l d x 2 d x 3  (dp). Using the polar decomposition, Jaumann stresses can 
196 be proved to be (Pai and Palazotto, 1995) 

200 Using (lo), (1 3) and (17) in (16) one can show that 

204 where A denotes the undeformed area of the reference surface, N is the total number of lavers, and zi and 
11) into (18) 205 zi+l indicate the locations of the bottom and upper surfaces of the ith layer. Substituting 

206 yields 

6l-I = ~ I s + ~ T i 4 { + 1 d A  

210 where [@I is a symmetric 3 x 3 matrix given by 
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213 It follows from (12) and (1H4) that 

{ W }  = PI{W 

{ U }  = {u, ux,  u y ,  u, ux, uy, w, 'Vx, w y )  

2 17 where 
T 



251 Substituting (30) into (22a) yields 

{V = ~O3{qb1}, PI = [aIPl (33) 
255 where [a] is a 9 x 3 matrix consisting of differential operators and [D] is a 9 x 24 matrix. Substituting (21) 
256 and (33) into (19) yields 
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where 

[~WP) = Jb, ~D lT I~ lTP l {~P4  (35) 

Ne is the total number of elements, Abl is the area of the$h element, [@q is the stiffness matrix of thejth 
element, [KJ is the structural stihess matrix, and { q )  is the structural displacement vector. We note that 
[e? and [KJ are not explicitly written. 

Because the structural stiffness matrix is a non-linear function of displacements, the governing equations 
need to be solved by an incrementalhterative method. To derive incremental equations, we let 

{qbl} = {qO} +  as^'}, {VI = {v") + { A W  (36) 

where { 4') denotes the equilibrium solution and {Aqb3) the incremental displacement vector. 
Because{J} = @I{$} and initial strains (or stresses) will be considered in the formulation, we will replace 
{IC/) with 

{$I + { + o }  + {+) (37) 

where { $'} represent known initial strains in the initial configuration described by the xyz coordinate sys- 
tem, and { $} represent unknown additional strains caused by additional loads. Hence, we obtain the first- 
order expansions of {$} and ['y] as 

{$I = { $ o }  + WO} + [YOllAU) (38) 
and 

[Y] = pol + [E] 
where the entry Ev of [EJ is given by 

(39) 

Then. we use (38) and (391 to expand (35) into a Taylor series and neglect higher-order terms to obtain 

Using (40) and direct expansion, one can prove that 

= IQl{AU) 

where [Q] is a symmetric matrix and its entry a, is given by 

Hence, substituting (42) and (33) into (41) yields 
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304 

308 

311 

312 
313 
3 14 
315 

316 

317 

321 
322 

325 

326 
327 

33 1 

338 
339 
340 
34 1 
342 

[Kkl]{qbI} = [-bl] K {Aqbl) + [Kbl]{qkl} 
IqV={81 

where v] is the so-called elemental tangent stiffness matrix and is given by 

and 

(45) 

We note that F"] is symmetric. Eq. (41) shows that initial strains and additional equilibrium strains play 

the same role in the formulation. In other words, any converged equilibrium state can be treated as a new 
undeformed configuration with initial strains {Go} + {IC/'}, which is similar to the updated Lagrangian ap- 
proach but no coordinate transformation is needed before updating { $0) because Juamann strains are de- 
fined with respect to the deformed coordinate system, as shown in (10). 

3.2. External loads 

The variation of non-conservative energy due to external loads is given by 

&w,, = J (rl6u + r26tl+ q ~ w ) d ~  = { 6u 6v  6w }{  ri ri r3 } ~ c ~ 4  
A L 

Ne 

/= 1 
= C { S q b ' } T { R b l )  = {6q}T{R} (47) 

where r!,r,j and r3 are distributed external loads per unit area along the axes .xi y and z: (30) has been used, 
is the e!ementa! ncda! !...ding vector, {!?\ is the structural nnda! !oading vectcr, and 

{ R q  = / !XIT{ TI F-? r3 IT& 148) 
.:A:', 

3.3. Incremental-iterative solution method 

With the use of a loading parameter i,, the governing equation of a static problem can be obtained from 
04,(l?Ri5bs 

[Kl{q} = R { R r )  (49) 

( 9 )  = (91, = {qO}  + MI = {q} , - ,  + {%I, (50a) 

where {Rr } (={R} / lL )  is a reference load vector. Let 

(50b) i. i,; = 1." + A,I~ = R+, + ai.; 
where i >, 2, i is the number of iterations in searching for a converged solution when the load increases from 
i. = Ao to 1 = A' + AA;, { qo} denotes the equilibrium solution corresponding to A = A', { q } ;  denotes the iter- 
ated solution corresponding to ,I = I.;, and { Aq}i denotes the incremental displacement vector correspond- 
ing to the increment AiLi = 2; - )? of the loading parameter. Substituting (50a,b) into (49), expanding the 
results into a Taylor series, and neglecting higher-order terms, we obtain 
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346 
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Here E] is a non-trivial matrix only if parametric loadings exist, is the local tangent stiffness matrix, 
and the subindices indicate the state, e.g., [k]i-l we use an 
alternative version of Riks’ method (Riks, 1979; Lee, 1992) to solve (51) and the following constraint 
equation 

,_,, >.=A,-, . To solve for { 6qI i  and 

{Aq}L1{6q}; + A4-164{&}:1 { R r } ; - I  = 0 (531 
which limits the arc-length increment by confining the current search direction to be perpendicular to the 
previous accumulated searching direction (Riks, 1979). 

3.4. Modal analysis 

After the statically deformed geometry of a membrane is obtained using the iteration method shown 
above, the tangent stiffness matrix [K] (see (45)) of the final deformed state is the stiffness matrix for the 
modal analysis. The mass matrix [MI needed for modal analysis is derived through the variation of kinetic 
energy FT by using (30) as 

where p is the mass density, is the e!ementa! mass matrix, tiq is the structural mass matrix, and 

The elemental tangent mass matrix is the same as because it is a constant matrix. 

4. Numerical results 

4.1. Inflated circular cylindrical tube 

We consider a membrane tube having a diameter D = 3 in. and a length L = 47.5 in. with two ends fixed. 
The tube was made by overlapping (by 0.5 in.) and gluing two opposite edges of a rectangular Kapton film 
using a 0.001“thick double-sided Kapton tape with silicone adhesive. According to the manufacturer the 
Kapton film has Young’s modulus E = 3.7 x 105psi, mass densityp = 2.7552 slugs/ft3, thickness 
h = O.O02in., and Poisson’s ratio v = 0.34. The seam is assumed to have a width w = 0.5in. and thickness 
h = 0.005in. In numerical analyses we focus on the effects of the longitudinal joining seam and different 
pressures on mode shapes and natural frequencies of a pressurized tube. 

Fig. 2 shows the tube modeled using rectangular membrane elements with the same thickness, where ele- 
378 ments are s h r u n k  by 20% in order toshow the connectivity of elements. Fig. 3 shows a single point Fre- 
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Fig. 2. The inflated circular cylindrical tube modeled using rectangular membrane elements. 

Fig. 3. A single point FRF of the inflated tube without a joining seam when p = 1.75psi. where the excitation is at DOF 825 and the 
response at DOF 819 in Fig. 2. 

379 quency Response Function (FRF) with an excitation at DOF 825 (see Fig. 2, a nodal transverse dispiacc- 
380 ment w )  and the response at DOF 819 when the tube is inflated with p = 1.75psi. The FRF is obtained 
381 using the iirst 100 modes with modal damping ratios assumed to be 0.02 for each mode. We note that clear 
382 peaks only show at modes #1(#2) and #3 (M) and there are no clear peaks in high-frequency ranges be- 
383 cause of modal couphg. Fig. 4 shows the First !2 node sh3ps axid mrrespondilg naturzi frequencies d 
384 the tube inflated with p = 1.75psi. Because the thickness of the tube is uniform, mode shapes appear in 
385 pairs because of the symmetric geometry. Hence, modes #1, #3, #5, #7, #9, and #11 are the same as modes 
386 #2, #4, #6, #8, #lo, and #12, respectively. We notice that only modes #1, #3, and #9 are global bending 
387 modes and most of other modes are local shell modes. Table 1 shows that reducing the internal pressure 
388 from p = 1.75psi to p = 0.8125psi reduces the natural frequencies, and it also changes the appearance se- 
389 quence of mode shapes after the eighth mode. For example, the 1 l th mode becomes the new 9th mode, the 
390 new 11th mode is a global torsional mode that does not appear in pair, and the third bending mode be- 
391 comes the new 15th (and 14th) mode. Table l also shows that, when p decreases, the natural frequencies 
392 of global bending modes only reduce a little, but the ones of shell modes (e.g., modes #5 and #7) reduce 
393 dramatically. 
394 Fig. 5 show the tube modeled using a thickness of h = 0.005in. for elements on the seam and 
395 h = 0.002in. for other elements. The FRFs shown in Fig. 6 show again that there are no clear peaks except 
396 the two peaks in the low-frequency range caused by the bending modes. Because shell modes dominate 
397 high-frequency responses and their frequencies are close to each other, modal coupling is expected and it 
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Mode # 1,2: 97.7 Hz 

z 
Mode ti 5,6:  420.1 Hz 

Mode # 9. 10: 439.5 Hz 

Mode # 3,4:  245.8 Hz 

Mode ff 7.8: 429.6 Hz 

Mode k 1 1. 12: 456.8 Hz 

Fig. 4. The first 12 mode shapes and natural frequencies of the inflated tube without a joining seam and having an inflation pressure 
p = 1.75 psi. 

398 will be difficult in obtaining mode shapes in experiments. Fig. 7 shows four low-frequency mode shapes and 
399 natural frequencies when p = 1.75psi. Because of the joining seam, the geometric symmetry is broken and 
400 natural frequencies 01 and w3 are different from 0 2  and we, respectively. However, the first four modes are 
401 still global bending modes, and shell modes still dominate high-frequency responses. We note that w2 > w1 
402 because mode #2 involves the bending of the joining seam, the 0.12 is higher than the 02 in Fig. 4, and the w1 
403 is lower than the 01 in Fig. 4. Modes #2 and # do not cause peaks in Fig. 6 because they are bending on 
404 the xy plane (see Fig. 5) .  
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Table 1 
Comparison of natural frequencies when the inflation pressure is reduced from p = I .75 psi to p = 0.8125psi and without the joining 
seam 

0 1  (W Y (W w5 (Hz) 07 (Hz) w9 (Hz) 
p = 1.75 psi 97.1 245.8 420.1 429.6 439.6 
p = 0.8125psi 96.7 244.4 287.5 300.6 438.1 (015) 

> z  

Fig. 5. The inflated circular cylindrical tube with a longitudinal joining seam. 

............................. 

 ma^ .-,.= b.~~,i,iu. ................. 
i - i  - ;  - .~ :  

--!- p., i - 

..................... . . i . . . . . . .L . . . . . . j . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . ) . . . . . .  I 

4 *w A A .w sw &a 7& B;a &lo *ob, 
F r s q u e n c y  0-k) 

Fig. 6. The single point FRF of DOF 1425 with an excitation at DOF 1419 of the inflated tube with ajoining seam whenp = 1.75psi. 

405 4.2. Tensioned rectangular membrane 

406 The 22in. x 2325in. x 0.002in. Kapton membrane shown in Fig. 8 has the same material properties as 
407 the inflated tube presented in Section 4.1, and the tension forces are aligned along the two diagonal lines. 
408 The tension force at each comer is applied through a 1 in. x 1 in. thin aluminum plate glued to the Kapton 
409 film. In the non-linear static analysis, the center point is fixed. In the linear modal analysis, the four comers 
410 are fixed by the four aluminum plates. Fig. 9 shows some low-frequency mode shapes and natural frequen- 
411 cies when T =  1.51bs. We note that most modes are local vibration modes around the edges except a few 
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Mode # 1: 95.3 Hz Mode # 2: 99.2 Hz 

Mode # 3: 240.6 Hz Mode # 5: 398.9 Hz 

Fig. 7. Four low-frequency mode shapes and natural frequencies of the inflated tube with a joining seam and p = I .75psi 

18 

t 
J T 

Fig. 8. The rectangular Kapton membrane with four corners loaded. 
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Mode # I:  13 -4 Hz Mode # 2: 17.7 Hz Mode # 3: 17.7 Hz 

Mode # 6: 20.0 Hz Mode # 8: 21 .I 9 Hz Mode # 9: 22.6 Hz 

. __. 

Mode # 1 0  24.4 Hz Mode#Il:24,7Hz Mode #12: 27.0 Hz 

Fig. 9. Some low-frequency mode shapes and natural frequencies of the tensioned rectangular membrane with T =  1.51bs 

global modes. These local modes are due to the non-uniform tension field over the entire membrane with 
the four edges being under small tension forces. For example, modes #2 and #3 are apparently local modes 
and modes #1, #6, and #9 are more like global modes. We note that modes #2, #3, #6, and #10 are dom- 
inated by vibrations of the two edges parallel to the x axis. and modes +I, #5, #?, and #11 are the corre- 
sponding local modes dominated by vibrations of the two edges parallel to the y axis. Because the 
membrane shape i s  non-square, the tension force along the two edges parallel to the 37 axis is higher than 
that along the two edges parallel to the x axis and hence the natural frequencies of modes +I, # 5 ,  #?, and 
#! ! are dightly higher than those of modes W ,  s3, e6, and et!n. respectively Tahle 2 compares the natural 
frequencies when T = 21bs with those when T = 1.5 Ibs. We note that increasing the tension force by 0.5 lb 
does not change the appearance sequence of the first few mode shapes, but the natural frequencies increase. 
Fig. 10a and b show FRFs of a response point at the center (DOF 1263, see Fig. 8) and a point ciose to the 
center of an edge (DOF 525), respectively. The FRFs are obtained using the first 70 modes with modal 
damping ratios assumed to be 0.02 for each mode. Fig. 9 shows that the dynamics around the edge is dom- 
inated by local modes and the dynamics around the membrane center is dominated by global modes, and 
Fig. lOa,b exactly show this phenomenon. Similar to those observed in the FRFs of the Kapton tube, the 
local modes have natural frequencies close to each other and hence modal coupling exists in all high-fre- 
quency ranges. 

Table 2 
Comparkon of natural frequencies of the rectangular membrane when the tension force is changed from T =  1.51b to T =  21b 

~~~ 

T =  1.51b 13.4 17.7 17.7 18.5 18.6 
T =  21b 15.5 20.5 20.5 21.4 21.5 
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Frrquancy (Hz) 

Fig. 10. Single point FRFs of the tensioned membrane when T =  1.51bs: (a) measured at DOF 1263 in Fig. 8, and (b) measured at 
DOF 525. 

429 5. Experimental resnlts and comparison 

430 5.1. IizfIated circular cylindrical tube 

43 1 
432 

434 
435 
436 
437 
438 
439 

A 3 3  
4 1 -3 

Fig. 11 shows the circular cylindrical Kapton tube set-up with 100 cicular retrc-reflective markers OI? it 
and a Ling Dynamic LDS V408 shaker attached to the plastic part that sealed and supported the left end of 
the tube. Because the membrane is transparent, the retro-re6ective markers were used to make thz mcas- 
urement using a Polytec PI PSV-200 scanning laser vibrometer possible and to enhance the laser signal. 
Eowever, the markers are small ( ~ 0 . 0 6 i n . ~ )  and mass loading from the markers is negligible. The retro- 
reflective markers look big in Fig. 11 because they reflected the flashlight from the camera. The seam is 
on the opposite side of the 100 measurement markers. Experiments were performed for inflation pressures 
p = 0.8125psi and p = 1.75psi For the FFT acquisition in using the scanning laser vibrometer, a 0-1 kHz 
periodic chirp excitation was used with 6400 FFT lines. Fig. 12a shows the averaged FRF of the tube with 

Fig. 1 1. The inflated circular cylindrical Kapton tube with retro-reflective circular markers 
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Fig 12. The FRFs of the inflated tube with an inflation pressure p = 1.75psi. f a )  averaged FRF. [h) FRF measured at center. and (c) 
FRF measured near the excitation location. 

440 an inflation pressure p = 1.75psi. Fig. 12b and c shows FRFs measured at the center (see Fig. 11, f t2) and 
441 near the excitation (#l), respectively. We notice that the FRFs havc many small pcaks Sut thc dominants 
442 peaks are in the low-frequency range, as expected. Moreover, because the membrane is so flexible, it was 
443 dificu!t to excite high-frequency mods anld hence the peaks in high-frequency ranges have small ampli- 
444 tudes. The first six Operational Deflection Shapes (ODSs) corresponding to the peaks in Fig. 12 are shown 
445 in Fig. 13. The ODSs #1 and #2 in Fig. 13 correspond to and agree well with modes #2 and #4 in Fig. 7. 
446 However, the experimental frequencies are lower than the numerical ones by 1 1.5 Hz (1 1.6%) and 20.6Hz 
447 (8.3%), respectively. The discrepancy could be the effect of air mass or due to incorrect material properties 
448 used in the numerical computation. Since Young's modulus of Kapton films is known to be a function of 
449 strains, temperature, and time, the value of E used in the finite-element analysis may not be accurate. Air 
450 mass may significantly change the dynamic characteristics of membrane structures and needs to be ac- 
451 counted for in the numerical analysis in order to have results comparable to experimental ones (Kukatha- 
452 san and Pellegrino, 2002). 
453 We note that ODS #4 corresponds to a traveling wave and thus is a coupled mode. The ODS corre- 
454 sponding to the peak at 60Hz was found to be a non-uniform traveling shape, and hence it is not an 
455 ODS at all. It was believed to be due to the electric power used to drive the electro-mechanical shaker. 
456 The ODSs in Fig. 13 look like pure bending modes. However, because the measurement was along a line, 
457 it is difficult to know if a measured ODS is a bending mode or a shell mode. 
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ODS Ill: 87.7 Hz ODS #2: 226.6 Hz 

Y "  A AY 

p, 
ODs #3: 357.9 Hz ODS #4: 395.8 Hz 

ODs #5: 627.0 M ODS #6 667.9 Hz 

bi 

Fig. 13. The first six ODSs and natural frequencies of the inflated Kapton tube with a pressure p = 1.75psi 

When the internal pressure is reduced from p = 1.75psi to p = 0.8125 psi, the frequency of ODS $2 de- 
creased from 226.6Hz (see Fig. 13) to 211.4Hz. 

5.2. Tensioned rectangular membrane 

Fig. 14 shows the test set-up of the 22in. x 23.25in. x 0.002in. rectangular membrane. Experiments were 
performed with an excitation at a single comer and with a simultaneous excitation at the four comers, 
respectively. The number of measurement points is 13 x 16. as shown in Fig. 14. The small circular 
retro-reflective markers have a radius of 0.14in., but they look big in the picture because they refiected 
the camera flashlight. Because of the local flexibility of membranes, the excitation points were positioned 
at where the tension cables were connected to the membrane at the four corners. Fig. i 5  shows the averaged 
FRF and a single-point FRF of the rectangular membrane with T = 1.5lbf and an excitation at the lower 
left comer. The peak at 6OHz in Fig. 15a was caused by the 60-Hz electrical power used to drive the shaker. 
The many small peaks in Fig. 1Sb around high-frequency ranges are due to local modes around the edges, 
as explained and shown in Figs. 9 and 10. Fig. 16 shows the first four ODSs and frequencies under the single 
point excitation. Fig. 17 shows the first four ODSs and frequencies obtained with T = 1.51bf and a simul- 
taneous excitation at the four corners. In order to simultaneously excite the four comers, the four corners 
were supported by a frame and a Z-shape rod was used to connect the frame to the shaker (see Fig. 14). The 
obtained FRFs are rougher than those in Fig. 15, which is probably due to the vibration of the rod. 

Figs. 16 and 17 show that the excitation location may affect the natural frequencies and mode shapes. 
ODSs #1 and #4 in Fig. 16 correspond to ODSs #1 and #3 in Fig. 17, and ODS #3 in Fig. 16 is similar 
to ODS #2 in Fig. 17. The ODSs #1, #2, and #3 in Fig. 17 correspond to and agree with the modes #1, #6, 
and #9 in Fig. 9. However, the experimental frequencies are much lower than the numerical ones. Since the 
rectangular membrane has a large area in contact with the ambient air, air mass significantly lowers the 
experimental natural frequencies. Moreover, Fig. 15 shows that there are no clear peaks beyond 20Hz. 
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Fig. 14. The rectangular Kapton membrane excited at the four corners by a frame with a tension force T =  1.51bs at each comer. 

I t 5  I I 
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@) 
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Fig. 15. FRFs of the rectangular membrane with T= 1.51bs when the excitation is at the lower left comer: (a) averaged FRF, and (b) 
single point FRF measured at the center of the bottom edge. 

481 In other words, high-frequency modes are highly coupled, and most experimental ODSs were observed to 
482 be traveling modes due to modal couplings. Hence, it is difficult to obtain experimental high-frequency 



L. G. Young el al. 1 Inlernaiwnal Journal of Sol& and Strucfures xxx (2004) xxx-xxx 21 

ODS #1: 5.9 Hz ODS #2: 9.2 Hz 

ODS #3: 10.5 rIz ODS #4: 15.0 Hz 

Fig. 16. The first four ODSs and natural frequencies of the rectangular membrane with T =  1.51bs and an excitation at  the lower left 
comer. 

ODS #1: 5.4 Hz 

ky X 

ODS #3: 15.9 Hz 

ODS #2: 12.7 Hz 

ODS #4: 19.4 

Fig. 17. The first four ODSs and frequencies of the rectangular membrane with T =  1.51bs and a simultaneous excitation at  four 
corners. 
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ODSs to be compared with the corresponding numerical mode shapes. The results show that only low-or- 
der natural frequencies and ODSs were able to be obtained experimentally because of high structural flex- 
ibility, high modal density, severe modal coupling, and heavy air mass. Moreover, experimental natural 
frequencies are all lower than numerical ones. This discrepancy is attributed to the in5uenc.e of heavy 
air mass. 

A simple way to account for the air mass effect in the vibration of the rectangular membrane is to in- 
crease the membrane’s mass density. If the density of the Kapton membrane is increase by a factor of 
2.6 to account for air mass when T =  1.51bf, the numerical natural frequencies of modes #1, #6, and #9 
decrease from 13.4, 20.0, and 22.6Hz (see Fig. 9) to 8.3, 12.4, and 14.OHz, respectively. We note that, 
although the 6th and 9th numerical natural frequencies become close to the experimental ones in Fig. 17 
(ODSs #2 and #3), the first natural frequency does not match because the air mass effect is not exactly 
the same as adding mass to the structure. Hence, advanced analysis by considering the air-membrane inter- 
action needs to be performed in order to accurately predict natural frequencies of membranes in air (Kuka- 
thasan and Pellegrino, 2003). 

Because the membrane thickness is usually so thin, any significant amplitude of harmonic excitation may 
cause the vibration amplitude to be larger than the thickness, and non-linear modal coupling, modulation 
of several linear modes at an unknown frequency, and/or even chaotic vibration may exist (Nayfeh and Pai, 
2004). In vibration testing using a scanning laser vibrometer, if the structural vibration is steady and peri- 
odic with a known period T and the recording at each location is controlled by triggering to begin at nT ( n  
is an integer) after the beginning recording time of the previous measurement point, the actual velocity pro- 
file at time f = fk will be the distribution of the measured velocities of all points at nT+ tk ,  where n is dif- 
ferent for each point. The ODS corresponding to the velocity profile can be calculated as the velocity profile 
divided by R(=27r/T) only if the vibration is harmonic. Hence a scanning laser vibrometer cannot measure a 
transient ODS or even a steady-state ODS having an unknown period. Fortunately a camera-based motion 
analysis system can solve these problems because it simultaneously traces all markers and provides truly 
Lagrangian descriptions of particle motions. 

To check whether the ODSs shown in Figs. 16 and 17 are real ODSs we also used our new EAGLE-500 
real-time motion analysis system shown in Fig. 18 to measure the ODSs of the membrane with T = 1.5 lbf. 
In ordci to have non-localized and non-contact excitations we used a lightweight 18 in. x 18.25k. x 0.09in. 
composite plate set-up to be parallel to the membrane and at 2.5in. away from the membrane’s center to 
push the surrounding air to excite the membrarx. Thc composite plate was fixed on a Ling Dqnmic LDS 
V408 shaker, and the excitation amplitude was controlled to be 3.5mm, 4.5mm, and 5.0mm for ODSs #1, 
#2, and #3, respectively. Experiments showed that this is a wry effcient way of exciting the membrane be- 
cause the air mass effect is so significant. The motion analysis system uses 8 high-resolution CMOS (com- 
plementary metal-oxide-semiconductor) cameras to capture pictures of a structure when 8 visible red LED 
strobes light up retro-reflective markers on the structure. The cameras and strobes are synchronized to 
work at a speed between 0.1 and 2000 FPS (frames per second). For a frame rate between 0.1 and 480 
FPS, a full resolution of 1280 x 1024 pixels is used. For a frame rate between 480 and 2000 FPS, a reduced 
resolution is used. Using triangulation techniques and the known focal lengths (after calibrations using an 
L-frame with 4 markers and a T-wand with 3 markers) of the cameras and the known coordinates of the 
bright points (cawed by the retro-reflective markers) on the 2D pictures inside the cameras, the EAGLE 
real-time software EVaRT 4.2 automatically computes and records the instant 3D coordinates of the center 
of each retro-reflective marker that is seen by at least two cameras. Hence, 3D time traces of all makers are 
available for performing dynamic animation using stick figures and showing pop-up graphs of displace- 
ments, velocities, and accelerations, and they can be output to other programs for further signal processing. 
The recording time length is effectively infinite and up to 600 markers can be simultaneously traced due to 
the use of large computer memory and a 100Mbit data upload rate. Because the 3D coordinates of each 
marker are checked and calibrated when more than two cameras see the marker, the measurement accuracy 
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Fig. 18. A typical set-up of an EAGLE-500 motion analysis system for measuring instant coordinates of many markers on a structure. 

O D S Y l :  5.1 Hz ODs Y3: 13.5 Hz 

Fig. 19. T h e  first three ODSs and frequencies of the rectangular membrane with T= 1.51bs and excited by the surrounding air pushed 
by a lightweight composite plate. 

is high. For example, the measurement error is far less than 1.0 mm when the measurement volume is 
2 x 2 x 2m3. We note that, although the measurement accuracy of the motion analysis system is lower than 
that of the scanning laser vibrometer, the ODSs measured by the motion analysis system are real ODSs 
because all points are measured at the same time. Fig. 19 shows the first three ODSs measured by the mo- 
tion analysis system, which agree well with those in Fig. 17. However, in order to efficiently excite the anti- 
symmetric ODS #2 shown in Fig. 19, the excitation plate was moved to excite only the left half of the mem- 
brane, but the turbulent air flow around the left edge disturbed the ODS shape. Moreover, the ODS #4 in 
Fig. 17 could not be obtained, which is probably due to the way of excitation or it is a non-linear mode with 
internal resonance. This problem requires further studies. 

540 6. Concluding remarks 

541 In this paper, we used Jaumann strains and stresses to derive a total-Lagrangian finite-element model of 
542 membranes. Results from finite-element analyses of an inflated circular cylindrical Kapton tube and a ten- 
543 sioned rectangular Kapton membrane were verified by experiments using a scanning laser vibrometer and a 
544 motion analysis system. Finite-element analyses of the inflated tube showed that shell modes dominate the 
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545 dynamics of the tube, and they are difficult to measure using the scanning laser vibrometer. Finite-element 
546 results and experimental data showed that the dynamics of the rectangular membrane is complex. Although 
547 some low-frequency mode shapes correlate well with the experimental ones, numerical natural frequencies 
548 are far higher than the corresponding experimental ones because of heavy air mass that was not included in 
549 the numerical analysis. Moreover, it is almost impossible to verify high-frequency mode shapes because of 
550 high modal density, severe modal coupling, and heavy air mass. 
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